
MASTER COPY KEEP FOR REPRODUCTION PURPOSES
4 ,

REPORT DOCUMENTATION PAGE
Form Approved
OMB NO. 0704-011

Public reporting burden fcr this collection of information is estimated to average 1 hour per response, includ.ng the time for rev.ew.ng inst '£<°^f'f' | «is >ng dta^sou ces
gathering'and maintaining the data needed, and completing and reviewing the col ect.on of mformabon SencI comment ^j5 o

d'"3'^^^ "^0
a
nf a°d

a
R%°0rts 12?5 Jefferson

collection of information, including suggestions for reducing this burden, to Washington Headquarters Services. Directorate fo 'n.ormat'°" "P:;a-°"f h?™,£ P
DC 20503

Davis Highway. Suite 1204. Arlington, VA 22202-4302. and to the Office of Management and Budget. Paperwork Reduction Proiect (0704-0150,, wasninaton. uo ZUJU^.

1. AGENCY USE ONLY (Leave blank) REPORT DATE
October 1997

REPORT TYPE AND DATES COVERED
Technical Report

4. TITLE AND SUBTITLE

Recording and Playback of Collaborative
Desktops on the Internet

6. AUTHOR(S)
A. Khetawat, H. Lavana, F. Brglez

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(ES)

Collaborative Benchmarking Laboratory
Department of Computer Science
North Carolina State University
Box 7550 NCSÜ
Raleigh, NC 27695-7550

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U S Army Research Office
P.O.Box 12211
Research Triangle Park,, NC 27709-2211

5. FUNDING NUMBERS

D7AAH04-9 4-G-028 0

8 PERFORMING ORGANIZATION
REPORT NUMBER

10 SPONSORING/MONITORING
AGENCY REPORT NUMBER

ftfLo l^l(°- 6"^L

11 SUPPLEMENTARY NOTES

The views opinions and/or findings contained in this report are those of the author(s) and should not be construed as
an official Department of the Army position, policy or decision, unless so designated by other documentation.

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited. 19980521 126
13. ABSTRACT (Maximum 200 words)

This paper presents a Tcl/Tk recording/playback architecture and implementation that records, plays
back and executes a Tcl/Tk collaborative Internet-based desktop. Specifically, the desktop brings
together distributed data, application workflows, and teams into collaborative sessions in which the
control of the desktop editing and execution is shared. A typical workflow invokes distributed tools

and data to support the design of microelectronic systems.

We argue that recording and playback of collaborative user interactions can have a wide-range of
applications, such as: 'keeping minutes' of interactive discussions, clicks of menu-specific commands
associated with different tools on the shared desktop, user-entered data and control inputs,
user-queried data outputs, support for automated software documentation, tutorials, collaborative

playback of tutorials and solutions recorded earlier, etc.

The summary of 540 Internet-based experiments, each relying on RecordTaker and PlaybackMaker to record,
playback, and execute ReubenDesktop configurations from local, cross-state, and cross-country servers,
demonstrates the effectiveness of the proposed concepts and implementation.

14. SUBJECT TERMS

recording, playback, desktop, collaborative,
workflow, Internet

17 SECURITY CLASSIFICATION
OR REPORT

UNCLASSIFIED

18 SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15 NUMBER IF PAGES
7

16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500
Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18
298-102

CBL (Collaborative Benchmarking Laboratory)
Department of Computer Science

Campus Box 7550
North Carolina State University

Raleigh, NC 27695

Recording and Playback of

Collaborative Desktops on the Internet

Amit Khetawat Hemang Lavana Franc Brglez

Technical Report 1997-TR@CBL-06-Khetawat
October 1997
© 1997 CBL

All Rights Reserved

"Permission to make digital/hard copy of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage, the copyright notice, the title of the publication and its date
appear, and notice is given that copying is by permission of CBL.
To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee."

If you choose to cite this report, please add the following entry to your bibliography database:

Qtechreport{
1997-TRQCBL-06-Khetawat,
author = "A. Khetawat and H. Lavana and F. Brglez",
title = "{Recording and Playback of
Collaborative Desktops on the Internet}",
institution = "{CBL, CS Dept., NCSU, Box 7550, Raleigh, NC 27695}",
number = "1997-TR@CBL-06-Khetawat",

month = "Oct",
year = "1997",
note = "{Also available at http://www.cbl.ncsu.edu/publications}"

}

To contact the Collaborative Benchmarking Laboratory via Internet, you may consider:

WWW : http://www.cbl.ncsu.edu/
Anonymous FTP : ftp: //ftp. cbl. ncsu. edu
For an auto-reply: benchmarks®cbl. ncsu. edu
To deposit a file at CBL: ftp cbl.ncsu.edu

cd /pub/Incoming
put new_benchmark.tar.Z

"DTIC QUALITY INSPECTED a^

Technical Report 1997-TRQCBL-06-Khetawat (October 1997)

Recording and Playback of Collaborative Desktops on the Internet

Amit Khetawat Hemang Lavana
CBL (Collaborative Benchmarking Laboratory)

Department of Computer Science
Box 7550, NC State University,

Raleigh, NC 27695, USA
http://www.cbl.ncsu.edu/

Franc Brglez

Abstract - This paper presents a Tcl/Tk recording/playback
architecture and implementation that records, plays back
and executes a Tcl/Tk collaborative Internet-based desktop.
Specifically, the desktop brings together distributed data, ap-
plication workflows, and teams into collaborative sessions in
which the control of the desktop editing and execution is
shared. A typical workflow invokes distributed tools and data
to support the design of microelectronic systems.

We argue that recording and playback of collaborative user
interactions can have a wide-range of applications, such as:
'keeping minutes' of interactive discussions, clicks of menu-
specific commands associated with different tools on the shared
desktop, user-entered data and control inputs, user-queried
data outputs, support for automated software documenta-
tion, tutorials, collaborative playback of tutorials and solutions
recorded earlier, etc.

The summary of 540 Internet-based experiments, each rely-
ing on RecordTaker and PlaybackMaker to record, playback,
and execute ReubenDesktop configurations from local, cross-
state, and cross-country servers, demonstrates the effective-
ness of the proposed concepts and implementation.
Keywords: recording, playback, desktop, collaborative,
workflow, Internet.

I. INTRODUCTION

The Internet and the on-going evolution of the world-wide
web is expected to evolve into a network without technologic,
geographic or time barriers - a network over which partners,
customers and employees can collaborate at any time, from
anywhere, with anyone. Even before the emergence of the
Internet, the design of microelectronic systems increasingly
relied on globally distributed databases, tools, and design
teams. The challenge of the Internet is how to make this
process more user-friendly, efficient, and effective - at a cost
that is transparent to end-users.

Customization, coordination, and repeated execution of
a collaborative Internet-based desktop environment for a
specific design project is a non-trivial task, especially for
a complex project involving a large number of distributed
data, tools, and team members. To support such efforts,
we have developed two utilities: RecordTaker and Playback-
Maker. Since this work started before the advent of JAVA
[1], the current prototypes are written in Tcl/Tk [2]. Both
can record, playback, and execute the collaborative Internet-
based ReubenDesktop environment described in [3, 4]. We

This research was supported by contracts from the Semiconductor Research
Corporation (94-DJ-553), SEMATECH (94-DJ-800), and DARPA/ARO (P-
3316-EL/DAAH04-94-G-2080).

"Permission to make digital/hard copy of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the copyright notice, the
title of the publication and its date appear, and notice is given that copying
is by permission of CBL. To copy otherwise, to republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee."

© 1997 CBL

argue that recording and playback of collaborative user inter-
actions can be seen as 'keeping minutes', not only of the in-
teractive discussions but also of the menu-specific commands
associated with different tools on the shared desktop, of user-
entered data inputs, and of user-queried data outputs. There
are other benefits of recording, such as

(1) support for automated software documentation and tu-
torials, capturing the dynamics of software interactions for
playback and review at a later time;

(2) study of activities and feedback on how teams actu-
ally collaborate, to improve the effectiveness and efficiency of
collaborative environments;

(3) remote assistance, by selecting and playing back effec-
tive solutions recorded earlier.

Today, the basic desktop environment of a computer dis-
play is largely determined by the windowing/operating sys-
tem of the host, e.g. MacOS and WindowsNT. The Com-
mon Desktop Environment (CDE) that makes applications
running on UNIX systems portable and easy to use is a rela-
tively recent commercial development [5]. Alternatively, there
is TkDesk [6], a public-domain desktop and file manager for
Unix and X written in Tcl/Tk. Prototypes of environments
that provide user-configurable GUI capabilities for collabora-
tive Internet-based desktop computing, with data and appli-
cations distributed on different hosts, have been demonstrated
only recently [3, 4, 7, 8] .

Much of the research on issues addressed in this paper pre-
dates the challenges and opportunities that have arisen with
the Internet. For example, an overview of research issues re-
lated to sharing applications is presented in [9, 10, 11]. Some
of the existing systems which provide a recording mechanism
include [12, 13, 14, 15]. In most of the systems listed above,
the implementation has been done using X protocols [16, 17].
A notable exception is the TkReplay [12], which provides an
extension to Tcl/Tk.

The paper is organized into the following sections: (2) back-
ground and motivation, to define a collaborative environment
and illustrate collaborative remote assistance using playback;
(3) recording and playback architecture; (4) recording and
playback implementation; (5) summary of 540 Internet-based
experiments, and (6) conclusions.

II. BACKGROUND AND MOTIVATION

The ReubenDesktop, described in this paper as recordable and
executable upon playback, satisfies the following properties as
a collaborative desktop environment [4, 7]:

PI: desktop is shared and multi-cast, so that each partic-
ipant can observe desktop actions of the others;

P2: desktop supports a shared and segmented 'talk win-
dow', so each participant can type messages to all others
in his/her own window segment;

1See also EE-Times report (16 June 1997) on DAC'97 demos, under URL
http://www.techweb.com/se/directlink.cgi7EET19970616S0001

P3: the shared and segmented 'talk window' supports a
token passing mechanism, so that at any time, only a
single user controls the desktop, but can pass the token
to any other user when requested.

An example of a ReubenDesktop satisfying properties Pl-
P3 is shown in Figure 1(a). The instance of the particular
desktop has been multi-cast by student Amit to his instructor
Hemang with a request for on-line assistance. In the case
shown, the desktop consists of two windows: (1) a sample
workflow that is not executing, hence the problem, and (2) a
FlowSynchronizer window that allows Amit and Hemang to
'talk' and describe the problem and a solution.

Here, instructor Hemang could have requested and received
permission from Amit to edit the workflow and thus show a so-
lution. Instead, Hemang remembers that earlier, he recorded
a solution to a similar problem for another student. Sub-
sequently, he decides to playback the pre-recorded solution,
shown in Figure 1(b). By passing control to Amit (the re-
spective FlowSynchronizer window is not shown), Amit can
now study the solution by re-executing the PlaybackMaker.

It is clear that the paradigm described in this example ap-
plies to a number of situations, including design reviews, with
high potential to reduce design errors or catch them early in
the process, thereby significantly enhancing the productivity
of the team effort.

(a) Collaborative description of a problem

Uorlflou Object IW: /hc.5/de..r:/rW

Hle|&Jlt|*|r5| I'MMl I
diMMMM

ftrit Mmt (canar.cbl.ncsu.edu>

— I hä»s sot tin's prcalei
iitim nrkfln creation.
I nerf assistance to assist?
inf exeats tte Kfkflar.

ill Heiarq lavana (geiini.cM.ncsü.eiii) i

IcaeacrisssMlarpriiMsi ~~* Js

tar* «hid I til! broadcast to
(on. P1S3S« observe and tte

(b) Collaborative playback of a tutorial workflow

UorltUow Ob>ct N«M: />-^«/<>w«-^''rt*Vv

Eitins tte «ive» fid» t» ä«
* jiniya now to execute
tte Mnari&l

fmi jp~;l Exit

Fra? Suti

U
toe

III. ARCHITECTURE

Recording and playback essentially involves capturing all
events that are generated during a session, and reproducing
those events in exactly the same sequence as they were gen-
erated. Event is an occurrence of an interaction between the
user and the windowing system. The windowing system con-
stitutes the local display, the keyboard, and the mouse.

In order to distinguish between the events occurring during
recording and playback, we categorize the events into two
types:

Window events are generated by the windowing system
during run time of an application, in response to the
interaction of the user with the application.

Synthesized events are invoked internally by the applica-
tion using Tcl/Tk commands and not in response to user
input. The Tcl/Tk interpreter arranges for the synthe-
sized event to be processed just as if it were a part of the
user input from the window system.

Every event consists of at least one primitive component. It
may also contain additional secondary components for de-
tails. Examples of primitive components, which occur when
the user interacts with an application on the local window-
ing system include: ButtonPress, ButtonRelease, MouseMo-
tion, KeyPress. The secondary component associated with
each event describes details such as the x-y coordinates of the
mouse on the screen, the key which was pressed, the mouse
button number which was clicked, etc.

(a) Block diagram of recording session

Recording
Interpreter

Run Time
Trace Data

(b) Block diagram of playback session

Run Time
Trace Data

Trace Data Playback

Session Processor

Fig. 1. Collaborative remote assistance using playback.

Fig. 2. Recording and playback architectures.

Recording Session Architecture. Figure 2(a) shows the
block diagram for the recording session. During the record-
ing mode, the Tcl/Tk code passes through a Recording Inter-
preter which records the user interactions with the application
and generates the Run Time Trace Data. The recording ses-
sion also provides a facility to segment the entire playback
session into several frames. The user can also insert a de-
scription about each frame which will be replayed during the
playback session.
Recording Interpreter Implementation. Tcl/Tk appli-
cations have an event-driven control flow, just as with most
window system toolkits. An event is handled by associating a
Tcl/Tk command to the event with the bind command. Each
Tk widget has default bindings for some of the events which
provides the basic functionality of that event with the wid-
get, e.g. the event Enter inside a button widget highlights the
button. Event bindings are structured into a simple hierar-
chy of global bindings, class bindings, and instance bindings.
Tcl/Tk provides the default behavior of buttons as bindings
on the Button class.

We introduce a new class called RecordClass, create new
bindings for each event we want to record, and associate these
bindings with the RecordClass. This RecordClass is attached
to each widget of the application to be recorded. The attach-
ment is done when the widget is created on the screen by
using the bindtags command.

The Trace Data Structure, used to store the information

(a) Timing diagram of typical
events to be recorded

. E'- .

B !

E,

B,

(b) Run time trace data
of recorded events

Event
list

Eo

Start
times

tro tri tri to
time

Fig. 3. Details of event timings during recording mode.

about the intercepted events, is implemented using Tcl/Tk's
associative arrays. This data format makes it easier to analyze
and create commands which would replay those events.

We also store the timings for each event. Timing informa-
tion associated with each event is very critical, and is useful
for synchronizing the synthesized event during the playback
session. Various terms related to a recording session are as
follows:

Ei The ith event in a session.

■tri

The time at which event Ei occurs
during a recording session.
The time difference between the occurrence
of the event Ei+i and the event Ei.

n The total number of events for a session.
Figure 3(a) shows a timing diagram illustrating the rela-

tionship between various events and their recording times.
Figure 3(b) shows a part of the trace data, which is a list of
events and their corresponding recoding times.
Playback Session Architecture. Figure 2(b) shows the
block diagram for the playback session. During the playback
mode, the Trace Data Processor reads the trace data and
creates commands to synthesize the recorded events. These
synthesized events are then scheduled by using event timings
to create the playback session. The playback session can be
controlled and tailored at the user's convenience.
Trace Data Processor Implementation. Tcl/Tk pro-
vides a command event generate to synthesize the recorded
window events. The Trace Data Processor creates the synthe-
sis commands for each of the recorded events with every detail
about that particular event. The event generate command
has the following format:
event generate window event [options]
The window is the widget in which the event is to be syn-
thesized. The options are used to specify the details which
are specific to each particular event. In addition to the basic
event synthesis command, Trace Data Processor also creates
the dynamic timing information for that event. This dynamic
timing event allows the user to playback in a user-friendly
manner. Some of the terminologies related to the playback
session are as follows:

tPi The time at which event Ei will be played back.
s Constant scale factor. This scaling factor

remains constant for the entire playback session
of all n events and is pre-computed
at the start of a playback session.

Si The dynamic scaling factor for the ith event.
This scaling factor may change anytime during
the playback session.

The two schemes we considered to implement the timing
details are given in Figure 4. Both the schemes use the after
command provided by Tcl/Tk to schedule an event at a later
time. Figure 4(a) shows the static scheduling of events in
which all the n events are scheduled at the start of a playback

(a) Static scheduling of playback events

tpl

wait s • trn wait s■tri wait 8 ■ trn

execute EQ
execute E\

execute En

(b) Dynamic scheduling of playback events

*P0
1P1

wait so • tr()
execute EQ wait «i • (tri — tro]

execute E\

Wait Sn • {trn — *rn_i.

execute En

(c) Comparision of static and dynamic scheduling of playback events

Playback time Static scheduling Dynamic scheduling

*P0
«PI
*P2

s-tr0

s ■ tri
S ■ tr2

so • tr0

«p0 + «1 ■ (trl - tr,,)
«PI +S2 ■ («r2 ~tTl)

«pn-1 +Sn • («r„ - '>■„_])

Fig. 4. Scheduling recorded and playback events.

session. The time, for which the event Ei is scheduled to
execute, is computed by multiplying tri with the constant
scale factor s. This approach has several limitations which
include the inability to schedule events dynamically during
the playback session. This limits the user's ability to pause
or vary execution speed between consecutive events.

This limitation can be overcome by using a dynamic ap-
proach, as depicted in Figure 4(b). In this approach, the
event Ei+i is scheduled at the start of execution of event Ei.
The scaling factor used for scheduling event Ei+i is computed
not at the start of playback session but at the start of execu-
tion of event Et. This gives the user flexibility to pause during
playback, or dynamically scale down or scale up the playback
speed. A comparison between the approaches is shown in
Figure 4(c).

IV. RECORDING AND PLAYBACK TOOLS

We use a simple application Print Hello button in Figure 5
to illustrate the main ideas used to implement the recording
and playback mechanism.

The left side of the figure shows the trace data, and the
right side of the figure shows the Tcl/Tk commands used for
synthesis of the recorded events and the user views as each
event is synthesized.

We now describe the steps illustrated in the Figure 5 to
synthesize the events like Enter, ButtonPress, etc.

Stepl. Invoke the button application with the command
pack [button .b -text "Print Hello"]

Step 2. Synthesize the event 'Enter' in the window '.b'
with the command
event generate .b <Enter>

Step 3. Synthesize the event 'ButtonPress' in the window
'.b' with the command
event generate .b <ButtonPress> -button 1
The option '-button 1' specifies the Mouse button 1.

Recording and Playback Tools. We have implemented a
RecordTaker and a PlaybackMaker. These tools assist users to

Trace Data From
a Recording Session

Event Synthesis
during Playback Session
pack [button .b -text "Print
Hello"]

wish tu
Print Hello

event generate .b <Enter>

Window : .b
Event : Enter
Time : tro

Window : .b
Event : ButtonPress
Time : tri
Mouse button : 1

. —1 wish mm
Print Hello

event generate .b
<ButtonPress> -button 1

wish

Print Hello

Fig. 5. Details of a recording and playback session.

create customized recordings and to provide convenient play-
back as described below. Figure 6 shows the GUI of Record-
Taker, which allows the users to customize their recordings.
The RecordTaker provides a facility to record a session in a
number of steps. It also facilitates the addition of descriptions
to each step. These descriptions may be needed to explain the
sequence of events during the playback. We introduce the
concept of frames in this context. Each step is called a frame.
The frame is essentially a breakpoint, which is inserted while
recording a session. Thus a session may be broken up into
several frames or it could be a single frame. Each frame itself
constitutes several events. The RecordTaker interface consists
of the following components:

File. This is a menu button, which allows the user to save
the recordings, import a particular frame description file, and
exit the recording mode.

Next Frame. This button inserts a marker for the current
frame. The marker indicates the end of the current frame
and the beginning of a new frame. This marker is used during
playback session to automatically pause after the set of events
in that frame have been played back, and wait for the user to
continue.

Current Frame. This is a text label to indicate to the user
the frame number of the current frame. The frame number
increases as each frame is recorded.

Edit Frame. This button allows the user to go back and
edit the description for a particular frame.

Frame #. This is the number of the frame whose descrip-
tion is to be edited.

FrameDescription. This is a text box in which the descrip-
tion of the steps involved in creating a frame, can be recorded.

Figure 1(b) shows the GUI of PlaybackMaker, which allows
the user to playback a recorded session at his convenience.
The PlaybackMaker allows the user to control the speed of the
playback sessions. The default playback speed is the speed at
which the recording was created. It also provides a facility to
pause between the playback of two consecutive frames. The
PlaybackMaker interface consists of the following components:

FrameDescription. This is a text box in which the descrip-
tion of the steps involved in creating a frame appears.

Rewind. This button restarts the playback session.
Frame #. This button displays the number of the current

Wil'W^X^^SS^ii^^^^SS^lM \{S\

File I ■- Help

This is the" description for ,fraiie 1 .'/ A

ii
7

Description Info '

Edit Fraise Frame 8 1

. i
i

- !
I

Recording Info - j
, _ r | Current Frane 8

, -. - Next Frase I ' " 1 s

Fig. 6. RecordTaker.

frame being played.
Exit. This button exits the playback session.
FrameSpeed. This slider is used to vary the playback speed

within a frame. This slider provides granularity of scheduling
events within a single frame.

Pause. This button pauses the execution of the active
frame. It puts a marker on the next step within the active
frame.

Continue. This button continues the execution of the ac-
tive frame from the next step, which had been marked by the
Pause button.

V. EXPERIMENTS

The prototype of an environment that records, plays back and
executes a Tcl/Tk collaborative Internet-based desktop, will
be put to the test as an integral part of a national-level col-
laborative and distributed design project involving teams at 8
sites (http://www.cbl.ncsu.edu/vela/). Specifically, the desk-
top brings together distributed data, application workflows,
and teams into collaborative sessions that share the control of
the desktop editing and execution. A typical workflow, such
as the one shown in Figure 7, invokes distributed tools and
data to support a major phase in the design of microelectronic
systems. A detailed description is available in [3, 4].

We argue that recording and playback of collaborative user
interactions can have a wide-range of applications, such as:
'keeping minutes' of interactive discussions, clicks of menu-
specific commands associated with different tools on the
shared desktop, user-entered data and control inputs, user-
queried data outputs, support for automated software docu-
mentation, tutorials, collaborative playback of tutorials and
solutions recorded earlier, etc. The 540 experiments, sum-
marized in this section, are the initial part of the Internet
desktop environment performance and functionality evalua-
tion, conducted before its release to Vela Project participants
and others.

Each of these experiments relies on interactive user inputs.
To maintain consistency of user inputs during the repeated
trial executions across the Internet (with variable quality-of-
service), we first record a single reference instance of each test
case on the local server (without relying on the network) and
then move these recordings to cross-state and cross-country
servers on the Internet. Each server has an executable version
of ReubenDesktop, OmniBrowser, RecordTaker, and Playback-
Maker. The experiments are initiated with a playback that
executes recorded instances of test cases, multi-casting them
to 1, 2, or 3 workstation displays at CBL. Additional details

TABLE I

SUMMARY OF 540 EXPERIMENTS PERFORMED ON THE INTERNET AMONG THREE SITES.

Operation Reference
Server

CBL Server Duke Server UCB Server
1-c ient 2-clients 3-clients 1-c ient 2-clients 3-clients 1-c ient 2-clients 3-cl ents

Real Time"
CPU Time6

Rec Min
Usr

Max
Sys

Min
Usr

Max
Sys

Min
Usr

Max
Sys

Min
Usr

Max
Sys

Min
Usr

Max
Sys

Min
Usr

Max
Sys

Min
Usr

Max
Sys

Min
Usr

Max
Sys

Min
Usr

Max
Sys

Co-editing-1
119.4 122.4

4.0
125.2

1.0
127.9
21.2

130.1
0.9

132.5
26.0

135.3
1.0

118.7
2.2

119.9
0.7

130.3
11.9

132.2
0.5

138.8
14.3

141.5
0.8

127.8
3.9

128.8
1.2

147.7
20.5

149.0
1.1

160.5
25.2

161.8
1.5

Co-editing-2 153.1 157.8
5.2

168.3
1.0

163.5
31.1

165.0
1.1

169.7
38.4

172.2
1.3

151.9
5.5

153.6
1.3

167.2
18.7

178.7
0.6

178.7
22.2

181.0
0.8

162.5
5.2

162.9
1.4

185.8
30.0

187.0
1.4

202.2
37.4

209.6
1.8

Co-editing-3 223.8 248.1
14.3

258.4
1.2

255.2
57.3

257.1
1.5

265.5
66.8

267.9
1.7

232.8
8.4

236.2
1.2

257.0
30.4

267.2
1.2

273.3
36.0

277.0
1.5

246.9
14.3

247.8
1.8

281.5
53.4

283.1
2.1

310.6
64.8

317.0
2.2

Co-browsing-1 136.7 131.2
6.2

134.5
1.2

131.3
45.1

144.2
1.9

151.3
62.5

160.0
2.9

128.8
3.5

129.9
0.8

138.3
23.1

141.0
1.1

142.5
29.7

152.4
1.3

140.0
6.3

151.1
1.6

155.4
40.7

231.8
2.0

217.2
53.9

233.9
2.6

Co-browsing-2 159.2 158.6
28.5

167.2
2.0

157.9
80.6

172.4
4.1

223.5
104.9

284.3
7.9

155.3
6.5

156.7
0.9

161.6
32.7

164.1
1.4

168.3
42.7

170.7
1.7

167.3
28.6

170.4
1.9

183.0
78.7

191.6
3.8

240.9
100.3

282.0
4.9

Co-execution-1 305.6 337.7
20.4

357.8
4.4

357.6
84.1

374.1
4.8

367.0
104.4

392.7
5.5

326.4
5.5

328.2
1.3

340.2
18.7

344.5
0.6

349.3
22.2

352.3
0.8

353.1
19.8

356.1
4.0

368.6
73.4

395.5
5.5

391.3
96.1

422.1
4.8

aBoth minimum and maximum values of 'real-time' are reported.
6Only average values of 'user-time' and 'system-time' are reported.

about these tools axe available in [3, 7, 8]. Experiments re-
ported in this section support a conjecture that will be the
subject of more detailed experimentation later:

Task-specific performance of a single/multiple client-
server ReubenDesktop execution can be predicted,
under comparable server and network loading, by
measuring the performance of pre-recorded task-
specific experiments that are executed and multi-cast
by the server to one/multiple client displays.

In other words, to assess the performance of interactive dis-
tributed sessions that involve one or more participants, we
have verified that the experiments, as reported in this sec-
tion, can be extrapolated by measuring the performance of
single- and multi-cast executions that are based on playback
of pre-recorded experiments on a reference server. The ben-
efits of not requiring a number of individuals to sit through
repeated session experiments are obvious. Specifics about the
testbed configurations, test cases considered, and tabulated
results follow.

K5 91 |-|o|*
HDricflw Object IUM; >i^/i»«7cU ^ibAwfkflow/p^lUonör :

File [Select \ ftwltff 1 EwcMtaf .Execution Mode ~i i Hel*

fjaja,.*!')"

Ife-rldng Directory: j.A,
rtsrt ObjectHeee:;: j/fcoee/l^ane/cbl'librtwafca/tiostS■
Brief description: 'i' :yerboee descrlptibr.;. ■":

: ;A JerkFlOB description of portitloner e*e*pla,.

Fig. 7. Partitioner workflow.

Testbed Configurations. In order to approximate typi-
cal instances of a distributed multi-site collaborative desktop
environment, we have created:

(1) local environment by installing the desktop software on
a CBL server2 which is multi-casting its desktop to one or

2SUN SPARC 20 (chip=60MHz memory=64Mb swap=732Mb)

more CBL client hosts;
(2) cross-state environment by installing the desktop soft-

ware on a server3 at Duke University in Durham, NC, which
is multi-casting its desktop to one or more CBL client hosts;
and

(3) cross-country environment by installing the desktop
software on a server4 at the University of California in Berke-
ley, CA, which is multi-casting its desktop to one or more
CBL client hosts.
Test Cases. We have created and recorded, directly on
the CBL server under negligible loading conditions, six test
cases of collaborative sessions with useful attributes that
demonstrate typical user-invoked tasks. The brief descrip-
tion that follows includes the reports of reaLtime, user-time
and systemMme as produced by the Unix utility time. The
'real-time' corresponds to the 'stopwatch-time' that could
have been obtained by the user monitoring the task. The
'user-time' is the time required by the CPU to complete the
task. The 'system-time' is the CPU time required by the
system on behalf of the task. A brief description of all test
cases engaging two participants, that were recorded for the
experiment, follows.

(1) Co-editing-1 (real-time=119.4s, user-time=31.1s, sys-
tem-time^.5s): Using ReubenDesktop, we open, and edit, a
simple 4-node, 3-arc workflow by selecting, opening, and clos-
ing a single data file node-configuration window.

(2) Co-editing-2 (real.time=153.1s, user.time=44.0s, sys-
tem-time^.9s): Using ReubenDesktop, we open, and edit,
the same 4-node, 3-arc workflow by selecting, opening, and
closing a single data file node-configuration window and a
single program node-configuration window.

(3) Co-editing-3 (real_time=223.8s, user_time=67.5s, sys-
tem_time=2.5s): Using ReubenDesktop, we open, and edit, the
17 node, 22 arc workflow by selecting, opening, and closing 3
data files and a single program node-configuration windows.

(4) Co-browsing-1 (real-time=136.7s, user_time=56.1s,
system.time=2.1s): Using OmniBrowser, we traverse a direc-
tory structure, located on the server's local file system, across
3-levels, with up to 141 items in each directory. The directory
structures of all the three servers were made exactly the same
for uniform comparison.

(5) Co-browsing-2 (reaLtime=159.2s, user-time=97.5s,
system_time=5.0s): Using OmniBrowser, we select, open, and
scroll, from start to end, the same copy of a text file of about
1000 pages (2.2Mb), located on each server.

3SUN SPARC Ultra 1 (chip=167MHz memory=256Mb swap=288Mb)
4SUN SPARC 20 (chip=60MHz memory=96Mb swap=365Mb)

(6) C'o-execution-1 (real_time=123.9s, user_time=90.0s,
system-time=3.8s): Using ReubenDesktop, we open, and ex-
ecute, the hierarchical workflow in Figure 7. As shown, the
workflow has 22 nodes and 28 arcs; during execution, the
node labeled as optimizer expands into a sub-workflow with
14 nodes and 15 arcs.

All test cases involved two participants working collabo-
ratively and consisted of exchanges of several dialogs via the
FlowSynchronizer between the two, during each recording ses-
sion.
Evaluation Method. All software and the files of six test
cases, recorded directly on the CBL server, have been repli-
cated on the server at Duke U. and the server at UCB. Scripts
have been invoked, during the night when both servers and the
network were least loaded, to execute the 540 experiments as
follows:
From each of the three servers, execute and
multi-cast 10-times, with interval of 30 seconds
between each execution:

(1) successively to one, two, and three client hosts at CBL,
recordings of co-editing-1, co-editing-2, co-editing-3;

(2) successively to one, two, and three client hosts at CBL,
recordings of co-browsing-1, co-browsing-2;

(3) successively to one, two, and three client hosts at CBL,
recording of co-execution-1.

A log file, generated by time (real-time, user.time, sys-
tem-time) command, archives timing data for each experi-
ment. Similarly, a log file, generated by sar (system activ-
ity report) command, archives the load on each of the three
servers during the execution of these experiments. The log
file generated by sar provided the information whether or
not both the load on the server and the network was suffi-
ciently stable to accept the 'real-time' and 'user-time' results
for tabulation.
Table I summarizes results of these experiments as follows:

(1) The first column lists all the six test cases.
(2) The second column reports the time required to record

the example on the reference server.
(3) Each cell in the remaining columns contains four values.

The top two entries report the minimum and maximum values
of 'real-time' and the bottom two entries report the average
values of 'user_time' and 'system-time' for each experiment.
Summary of Results. The data presented in Table IV al-
lows us to evaluate the performance of Internet-based desktop
environments.

1. The 'real-time' for playback to a single-client on the
reference server is approximately the same as the time
required to record the test cases.

2. The 'real-time' for playback from other servers varies,
depending on the distance between the host server and
its clients and the characteristics of the host server.
Specifically, for single-client playback, Duke server con-
sistently reported least execution times, followed by CBL
server and UCB server. This is attributed to the higher
performance server at Duke. However, for multi-clients,
the execution times increased with distance in the order
CBL, Duke, and UCB.

3. When the experiment is multi-cast to 2-clients or 3-
clients, it takes slightly more time, of the order of few
seconds, for execution than the time required for single
client execution. The negligible increase in the playback
time for multi-client execution is due to the fact that the
exchange of dialog among participants is computation-
ally least intensive.

4. The variations in minimum and maximum values of
'real-time' for each experiment are negligible since the
experiments were performed during the night. However,

the same experiments showed significant variations dur-
ing the day when the network traffic and the server load
is unpredictable.

5. Comparing the 'user-time' and the 'system-time' for
each server, we find that the CBL server requires the
most CPU time and the Duke server requires the least
CPU time. This follows directly from the different types
of processors and the configuration of each server.

Observations. The successful completion of all 540 exper-
iments provides us with assurance that the experiments are
consistently reproducible on a variety of servers, given that
the server nominal load is small and that the network is sta-
ble. Specifically, we confirmed that

• Repeated real time executions of experiments, where
user-inputs are carefully and consistently entered (rather
than pre-recorded), gives 'real-time', 'user_time', and
'system-time' performance that is comparable (within
10%) of the times reported for pre-recorded execution
on any server - provided that the server load and net-
work conditions are as favorable.

• The performance of the Internet-based desktop environ-
ment, even in a collaborative mode, is quite good under
nominal network traffic and load on the server. Hence,
with sufficient network bandwidth and powerful proces-
sors, it is possible to work collaboratively with efficiency
and effectiveness even when participants are dispersed
across the continent.

• As the number of clients, corresponding to each partici-
pant, increase from 1 to n during playback, the increase
in 'real-time' execution is of the order of few seconds
only. Again, this increase is subject to the server and
network performance and the amount of dialog among
participants present in the recording.

CONCLUSIONS

We have proposed a Tcl/Tk recording/playback architecture
and an implementation that records, plays back and executes
a Tcl/Tk collaborative Internet-based desktop. Both tools,
RecordTaker and PlaybackMaker, can be used as stand-alone
Tcl/Tk applications or as a part of a larger system such as
ReubenDesktop.

We envision that a number of collaborative user interac-
tions and Internet users will find useful application of the
proposed recording and playback mechanisms. Specifically,
considerable resources would be required to conduct the fea-
sibility of collaborative remote user-interactions, sharing of
tools, and desktops to accumulate as much information as we
tabulated on the 540 Internet-based experiments in this pa-
per. Without the RecordTaker and PlaybackMaker, we would
require a number of participants over an extended period of
time.

There are a number of new features that will will extend
the applications and the utility of RecordTaker and Playback-
Maker. These include:

(1) an environment in which several recordings can be
spliced together to create a new recording.

(2) extending the recording and playback collaborative en-
vironment to the World Wide Web (WWW). Such an en-
vironment can be seen as a new service, available from the
WWW.
ACKNOWLEDGMENTS. We could not have reported as compre-
hensively on the results of our Internet Desktop experiments
without getting generous user accounts on two remote servers,
facilitated by Dr. Richard Newton at UC Berkeley and Dr.
Gershon Kedem at Duke U. We thank them and their support
staff for this privilege.

REFERENCES

[I] The Java Home Page. Published under URL:
http://java.sun.com/,1997.

[2] The Tcl/Tk Project At Sun Microsystems Laboratories. Published
under URL:
http://www.sunlabs.com:80/research/tcl/, 1997.

[3] H. Lavana, A. Khetawat, F. Brglez, and K. Kozminski. Ex-
ecutable Workflows: A Paradigm for Collaborative Design on
the Internet. In Proceedings of the 34th Design Automa-
tion Conference, pages 553-558, June 1997. Also available at
http://www.cbl.ncsu.edu/publications/.

[4] H. Lavana, A. Khetawat, and F. Brglez. Internet-based Work-
flows: A Paradigm for Dynamically Reconfigurable Desktop Envi-
ronments. In ACM Proceedings of the International Conference
on Supporting Group Work, number 1997-GROUP-Lavana, Nov
1997. Also available at http://www.cbl.ncsu.edu/publications/.

[5] The Common Desktop Environment Technical Library. Published
under URL:
http://www.aw.com/devpress/series/cde.html, 1997.

[6] Christian Bolik. Tkdesk. Published under URL:
http://sunl.rrzn-user.uni-hannover.de/"zzhibol/tkdesk/, 1997.

[7] Amit Khetawat. Collaborative Computing on the Internet. Mas-
ter's thesis, Electrical and Computer Engineering, North Car-
olina State University, Raleigh, N.C., May 1997. Also available
at http://www.cbl.ncsu.edu/publications/.

[8] H. Lavana, A. Khetawat, and F. Brglez. REUBEN 1.0
User's Guide. CBL, Research IV, NCSU Centennial Cam-
pus, Box 7550, Raleigh, NC 27695, 1997. Also available at
http://www.cbl.ncsu.edu/publications/.

[9] P. Sprgaard. A cooperative work perspective on use and devel-
opment of computer artifacts. In the 10th Information Systems
Research Seminar in Scandinavia, Vaskivesi, August 1987.

[10] H. Abdel-Wahab and K. Jeffay. Issues, Problems and Solutions in
Sharing X Clients on Multiple Displays. In Journal of Internet-
working Research and Experience, pages 01-15, March 1994.

[II] G. Chung, K. Jeffay and H. Abdel-Wahab. Dynamic Participation
in Computer-based Conferencing System. In Journal of Computer
Communications, pages 07-16, Vol. 17, No. 1, January 1994.

[12] Charles Crowley. TkReplay: Record and Replay in Tk. In Pro-
ceedings of the Tcl/Tk Workshop, Toronto, Canada, July 1996.

[13] D. Annicchiarico, R. Chesler, and A. Jamison. XTrap Architec-
ture. Digital Equipment Corporation, July 1991.

[14] XRunner 4.0: The Standard in X Window GUI Testing. Published
under URL:
http://www.merc-int.com/products/XRunner4/index.html, 1996.

[15] QC/Replay. Published under URL:
http://www.centerline.com/products/qc_rply.html, 1995.

[16] P. Asente, R. Swick, and J. McCormack. X Window System
Toolkit: A Complete Programmer's Guide and Specification.
Digital Press, 1990.

[17] R. W. Scheifler and J. Gettys. X Window System: the Complete
reference to Xlib, X Protocol, ICCCM, XLFD. Digital Press,
1992.

